Sponsors

free counters

Thursday, August 26, 2010

Power Consumption and Operating Mode Phone

Power Consumption and Operating Mode

Phone status (Mode) is different: Power-Off Mode, Sleep Mode and Active Mode.
Power Off Mode, the status of this phone in a state of inactive (dead), Power (VBAT / Battery Voltage) are given to retu, TAHVO, PA, HWA Camera, Bluetooth, AHNE. Current consumption is used to 200uAmper.

Sleep Mode, this status, phone alive but is not operating. The phone will go to the Sleep Mode after 50-10 seconds if it is not used or operated. The phone will come out of Sleep Mode and go to Active Mode konsisi instrupsi if there are some, such as: connections Charger, Key press (keypad), connect the headset, phone / sms entry, etc..

In Sleep Mode, MCU and DSP are contained in the RAP is in Stand by mode. Sleep is controlled by the RAP. When SLEEPX issued a low signal which was then detected by retu and TAHVO, then the phone goes to sleep mode conditions. In this condition vCore under conditions of low (1.2 V) decreased by approximately 0.2 volts, while the FiO and fixed VDRAM 1.8Volt. VR1 is the voltage provided to VCTXO will be very low, because in this mode clock 38.4MHz System will not be generated by VCTXO. As a reference to the need Baseband Clock, Clock will be provided by the Sleep Clock oscilator that can produce 32.768 kHz.
If SLEEPX = 1 (High) and detected by retu TAHVO, it will enter Active mode conditions. All functions are enabled, VR1 to VCTXO will be active (2.5Volt) vCore also will lead to 1.4 Volt.
Current consumption required in Sleep Mode condition is very low, around 20mAmper only, while in the Active Mode conditions will need to 200mAmper current consumption, even more than that if the phone is in Burst Reception, Burs Transmission, also DSP work, etc.. One konsisi (Sub-State) in the Active Mode is the FM Radio, because retu, TAHVO and FM Radio live. FM radio circuit controlled by the MCU and Clock generated in the RAP. VR1 would be running.

In normal operation, voltage from the baseband given Battrey of 3.6 - 4.0Volt. Battery must be capable of providing a nominal capacity until 720mAmper flow.
Baseband contains several components that control the distribution of medial (Power), the entire phone system except the PA (Power Amplyfier), which have their own point of VBAT voltage (Battery). Battery provides direct phone systems throughout the retu, TAHVO, PA, HWA Camera, Bluetooth, AHNE, LED Driver, IR Module, Vibra.
Distribution system controlled by a second voltage ASICs, called retu and TAHVO. the voltage on the Hardware The phone can be given by the two ASICs, the retu and TAHVO usually called the Energy Management. Power Up Hardware entire function can not happen if the Battery voltage is less than 3Volt.

Baseband is given from six different regulators within retu and TAHVO (vCore, VANA, Fio, Vaux, VDDRAM, and VSIM), which provides a nominal voltage and current can be shown in table 1. For voltage accessories that will be connected to a system connector, will be given voltage for 2.5Volt Fout. While for the voltage provided by TAHVO via USB VBUS for 5Volt.

MMC / Micro SD and a camera that uses HWA (Hardware Accelerator) has tersendiri.VMMC regulators, namely the working teganan for MMC, dihaslkan by N3200. while VDIGCAM, namely the working voltage for the cameras, produced by the DC-DC Converter N3300.

Retu also will provide voltage VR1 (2.5Volt), VRCP1 (4.7Volt), VRCP2 (4.7Volt), VREF (1:35 Volt) for the RF Module. AHNE also provided the voltage of VBAT (Battery).

Retu have a Real Time Clock (RTC), which is given when the voltage of the RTC Backup Battery has been released. Battery Backup RTC is Rechargeble and that too in the content by retu when the main battery or the charger has been disconnected.


CLOCK DISTRIBUTION

The main clock signal (System Clock) for Baseband generated from the Voltage Temperature Control oscilator (VCTCXO). This can produce oscilator wave 38.4MHz clock signal, which then will be forwarded to the signal via pin OSCIN AHNE. Inside AHNE reconstituted clock frequency is then given to RAPGSM via pin RFCLCKP and RFCLKN.

Clock Slicer RAPGSM has therein, for MCUPLL and DSPPLL, where the Clock is a clock signal is multiplied up to a maximum of 40MHz to 130MHz for MCU and DSP. CTSI blocks within the RAP will produce for CBUS Clock 2.4MHz and 38.4MHz for RF IC control bus. Internal PLL on RAPGSM also will generate a clock signal to others who need a clock, say: MMC, SIM, CCP & I2C for the camera and Memory COMBO.


38.4MHz system clock can be stopped when the Sleep Mode, to disable the voltage to VCTCXO (VR1) generated by the retu. VCTXO can be enabled or be disabled by the control signal SLEEPX.

Sleep Clock 32.768KHz retu provides for the use of an internal clock of the RAP, where the status of the Sleep Mode, the System Clock in a state of inactivity, so instead 32.768KHz Sleep Clock Internal Clock that will give to the RAP.


SMPS Clock Clock 2.4MHz is the path of RAPGSM to TAHVO used to singkronisasi on Mode regulator is switched on. Sleep Mode In the circumstances, VCTCXO will be inactive (Off), this signal will start at the status? 0?.

Bluetooth also needs to be befungsi Clock, Clock Signal was given AHNE at 38.4MHz


TAHVO can provide 600KHz Clock, clock source is provided from the internal RC oscilator in TAHVO. 600KHz clock normally used for SMPS vCore APE, but in Nokia phones that use RAPGSM, did not have APE SMPS vCore, then the clock will not be used.

POWER UP RESET
Power up and reset the control by the retu and TAHVO. phone can live in the following manner:
Hitting the Switch On / Off, which is referred Grounding pin PWRONX of retu.
Connection to the input Charge Cell Phone Charger
RTC Alarm, RTC has been programmed to give alarm

After receiving one of these signals, retu began to enter the Reset Mode. Then the watchdog starts counting (Active), and if the battery voltage and the BSI have been appropriate then retu will launch delay (Delay) 200us. At the same time, signals from the retu RSTX will be given to TAHVO to mengaktifkanTAHVO. After the delay time has elapsed, the voltage will issue retu: VANA, Fio, VR1 and VDRAM. While TAHVO will issue teganan vCore. Then point PURX (Power Up Reset) determines low for 16ms. Reset it, then give to RAPGSM PURX to reset the MCU and DSP. During the reset phase, the command to the regulator retu VCTCXO describe without seeing the status of the control signal input to retu sleep.

POWER UP WITH BUTTON POWER

When the power button is pressed, retu and TAHVO enters a power-up sequence. By pressing the power button will make the pins in the retu taxable PWRONX Ground. Signal PWRONX not part of the keypad matrix. Only connected to the power button retu. Means that when pressing the power button, making the resulting RAP commands to turn on the MCU. MCU then reads the command register and then send a message retu PWRONX command. Then the MCU reads the status signal from PWRONX with Control BUS (CBUS). If the signal PWRONX remain low for a certain time then the power MCU considers this a valid command (right) in the system and proceed with the initialization of the Baseband Software. If the power button is indicated as not valid then the MCU power off the system baseband back.
POWER UP WHEN Charger connected

Where to be able to detect or start charging where the main batre be true? was not in charge (empty) and therefore does not have TAHVO suply (NO_SUPPLY or retu backup mode) charging in control by START-UP charging circuitry.


VBAT detected below the level where the master reset (Vmstr-) charging in control by START_UP charge circuitry. Connecting the charger to increase detection VCHAR input charger, VCHdet + by the detection of star-up kemuadian start charging. TAHVO produce 100mA fixed output flows from the charger output voltage connection. As batre in his charge, the voltage rises, and when the VBAT voltage level higher than the limit of a master reset (Vmstr +) charge in hetikan START_UP.


Monitor the voltage level of VBAT has been completed by the charge control block (Chacon). MSTRX =? 1? reset output signal (internal to UEM) is given to TAHVO RESET block when VBAT> Vmstr + and UEM in the first reset.


If VBAT is detected when it falls below Vmstr-charging start-up, charging at the stop. Will restart if new input rises above the limit VCHAR detected (rising above VCHAR VCHDET +).
POWER UP WHEN THE BATTERY connected


Baseband can live with the battery connections with enough voltage. When the battery voltage detected TAHVO retu and will enter the reset phase


The phone will be active in? LOCAL MODE? BSI resistor setting 3.3kOhm
The phone will be active in? TEST MODE? BSI resistor setting 6.8Ohm


This mode is often needed when the process of programming (Flashing).

RTC ALARM POWER UP
If the phone is in POWER_OFF mode occurs when the RTC alarm wake up procedures. After the baseband in order to give life to the MCU. When the RTC alarm occurs in ACTIVE mode command to result in the MCU.

POWER OFF
Baseband will be disabled if all conditions have been properly
? Key power in the press
? Voltage battery is too low (VBATT = 3.2 V)
Turn off the power at the control procedures by retu.

1 comment:

  1. Thank you for the info. It sounds pretty user friendly. I guess I’ll pick one up for fun. thank u
    SMPS Battery Charger

    ReplyDelete

Stay Connected